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Analysis of a Narrow Capacitive Strip in Waveguide

KAI CHANG axp PETER J. KHAN, MEMBER, IEEE

Abstract—A theoretical determination is made for the susceptance
of a narrow conducting strip inserted vertically into a waveguide.
The theory is based upon a variational form for the susceptance. A
suitable current distribution along the strip is obtained for the vari-
ational equation, and is found to be similar to that determined from
analysis of backscattering by a cylindrical obstacle irradiated from
an incident plane wave. Accurate theoretical results may be ob-
tained using a sinusoidal current distribution having a phase constant
of 7/2d, where d is the strip depth. Experimental results agree
closely with the theory in the dominant-mode range and also at
frequencies below cutoff.

I. INTRODUCTION

HIS PAPER reports an analysis of the effect of in-

gertion of a narrow infinitesimally thin conducting
strip vertically into a rectangular waveguide such that
the strip does not extend across the entire height of the
guide. The principal feature of the variational method
used here is the determination of a suitable form for the
current distribution along the strip. The effort to find this
distribution was motivated by the need to characterize
the obstacle reactance at frequencies below the dominant-
mode cutoff frequency as - well as in the more usual dom-
inant-mode range.

A variety of capacitive obstacles are in common use in
waveguide circuit design, including capacitive windows
and circular cylindrical probes or tuning screws inserted
vertically into the guide. Use of the narrow strip was con-
sidered here, in preference to the more usual obstacles,
because it offered a ready means of adjusting the strip
insertion, with the likelihood of decreased loss when com-
pared to the capacitive tuning screw.

The variational technique developed by Schwinger [1]
has been applied to the narrow inductive strip by Collin
[2], and to the circular cylindrical probe in waveguide by
Lewin [3], [47] and Collin [27]. The resulting variational
expression for the shunt reactance contains a term repre-
senting the current distribution along the obstacle; sub-
stitution of an approximate expression for this distribution
vields a reactance value which provides an upper bound to
the exact value. Typically, the current distribution has
been assumed constant for the inductive strip; for the
probe, the current is taken to have a sinusoidal form, with
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a free-space phase constant ky = 2x/\, and with a zero
at the open end of the probe. Experimental measurements
by Al-Hakkak [57] agree with the theoretical results of
Collin, provided the probe length does not exceed 0.6 of
the guide height. Detinko and Levdikova [6] have con-
sidered the case where the current is constant along the
probe, in an attempt to reconcile the theory with experi-
mental measurements on long probes.

Characterization in the waveguide cutoff-lrequency
range was required because the capacitive obstacles were
being considered for use in the design of evanescent-mode
waveguide filters [7]. Mok [87] has presented expressions
for diaphragm reactances in evanescent waveguides, and
has reported measurements indicating that a probe ob-
stacle remains capacitive below the waveguide cutoff
frequency.

II. THE VARIATIONAL EQUATION

The structure to be analyzed is shown in Fig. 1. The
strip is assumed to be infinitesimally thin, and to be suf-
ficiently narrow that the current does not vary appreciably
with z, in the range 2 < z < . Both the strip and the
waveguide are assumed to be formed of material having
infinite conductivity. The strip is located at z = 0.

The derivation of the variational equation follows the
procedure set out in Collin [2], with additional com-
plexity introduced by the fact that the current is a fune-
tion of the coordinate y in the present case.

Considering a dominant-mode incident electric field

. 7z ~
;= sin (;) exp (—Tw2)y
the resulting scattered field may be expressed as

E. = —jwuo /S G(r| ) -J(r') dr’ )

where the integration is carried out over the strip surface
S, and the dyadic Green’s function for use here is given
by Tai [9] in the form

G(r|r) = G,(r|1)3y

where
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Fig. 1. The thin capacitive strip in rectangular waveguide.
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The current is assumed to have only a y component, and
to be a function only of y on the narrow strip surface S.
Since F, vanishes on the perfectly condueting surface S,
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The reflected dominant mode for z < 0 is characterized

by a reflection coefficient . The value of B comes from
(1) in the form
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Substituting for R in (3),
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which may be put in the form

(1+R)/J () sm( )dxdy

—Jwﬂo[(i i + i )

n=2 m=0 m=1; at n=1

Using (4) and (6), an expression for the susceptance is
found in the form
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Using a method similar to that of Lewin [3, p. 79] this
expression may be shown to be stationary for small
variations in J, about its correct value. Use of an ap-
proximate form for J, in (7) yields a lower bound on the
true value of the suscéptance.

The expression (7) reduces to a form 1dent10al to that
of Collin [2] if the strip extends across the entire wave-
guide height sand the current is assumed constant along the
strip.

III. CURRENT DISTRIBUTION ALONG
THE STRIP

Waveguide probe studies [27, [3], [5] have used an
approximate current distribution of the form

Jy(y) = sinko(y — b+ d). (8)

Consequently, this distribution was used in (7) for the
narrow strip. The resulting values of B were found to be
in reasonable agreement with the experimental measure-
ments for the dominant-mode propagation frequency
range. However, the theoretical valiies were considerably
less than those found by experiment in the dominant-mode
cutoff frequency range (shown in Fig. 5).
Use was then made of the modified distribution

To(y) = sin ks(y — b + d) (9)

where [y is to be determined by substituting in (7) and
finding the k: value which extremizes the variational ex-
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pression for 7B. Implicit in this choice is the assumption
that the current is zero at the end of the strip where
y = b — d. This is valid when the end-capacity of the
strip can be neglected [3, p. 86]. When d approaches b,
the validity of the assumption will be weakened.

Substituting (9) in (7) and evaluating the integrals, we
obtain

7B = C(cos kud — 1)2/ {A(cos kd— 1)+ 3 {
m=1

where
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Putting (9/8k,) (jB) = 0 yields the equation
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The solution cos kid = 1 to (11) is inappropriate to our
purpose since it gives jB = 0. We are therefore led to seek
solutions to the equation f(k;) = 0. Despite its apparent
complexity, this equation is readily solved numerically,
taking advantage of the fact that the infinite series are all
rapidly convergent and can be approximated by a small

(12)

(m21r2 — k12b2)
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number of terms. Using a half-section method, with an
error interval of 0.03, the infinite series could be truncated
with N < 20, M < 20.

The resulting k; values are shown for a typical set of
electrical and geometric parameters in Fig. 2. It is evident
that %, 18 only slightly dependent on frequency, position,
and width, and that its value is quite different from ko.

s [(——1)"‘003 kid — cos 27%—_—@]2“ (10)

kA Bnbt

The variation of k; with d can be approximated by the
equation ky = w/2d with good accuracy. Thus the vari-
ational solution for k; yields a sinusoidal current distribu-~
tion which proceeds from zero at the open end of the strip
to a maximum at the point close to y = b, where the strip
meets the waveguide wall.

Use of (9) with k1 = #/2d reduces (10) to the form

(13)

This distribution is reminiscent of that obtained from
analysis of backseattering by a cylindrical obstacle ir-
radiated from a broad-side incident plane wave. Tai [10]
has shown that accurate results may be obtained for a
long thin wire of length 2! centered at the origin and co-
inciding with the 2 axis by use of the current distribution

I(z) = Ip(cos ke — cos kdl)
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Fig. 2. The free-space parameter k, and the variational parameter
k1 shown as a function of (a) strip depth d (in); (b) frequency
f (GHz); (c) strip-center location z, (in); (d) strip width w (in).
The following values are used, except for the quantity being
varied: w = 0.15in; d = 0.3 in; f = 11.0 GHz; z, = a/2. The
solid line indicates k; and the broken line ko; the dimensions of
ko and k. are reciprocal inches. For these calculations, ¢ = 0.90
in; b = 0.40 in.
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which proceeds uniformly from zero at the ends to a
maximum at the center, for kl < w. He also shows that the
accuracy obtained with this distribution is reduced when
l takes values satisfying tan ko = kol.

Arguing by analogy, it might thus be anticipated that
a suitable alternative to use of (9) for the narrow strip,
with &y = #/2d, would be use of

J,(y) = cosko(y — b) — cos k.

For conventional waveguide, kb < = for frequencies
extending to the upper end of the dominant-mode region.
Substitution of (14) in (10) yields an expression for the
normalized susceptance in the form

(14)

jB = CI}O sin (ked) — d cos (kod) ]2/ {A[l—lc— sin
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IV. EXPERIMENTAL MEASUREMENT
PROCEDURE

The susceptance is readily measured in the dominant-
mode range using conventional slotted-line techniques.
However, this method is inapplicable to measurements in
the frequency range below cutoff. Mok [117] has described
a procedure using a slotted line together with a wave-
guide filled with dielectric material; the range of fre-
quencies below cutoff over which measurements can be
made depends on the value of the dielectric constant, and
the accuracy decreases as the frequency decreases.

The technique used here depends upon resonance of the
obstacle with a section of waveguide below cutoff, and is
based on the filter design theory of Craven and Mok [77].
A waveguide section of length 2/, with a shunt strip
obstacle at the center of that length, is shown in Fig. 3(a),
and its equivalent cireuit illustrated in Fig. 3(b). The
characteristic impedance of the line is given by jX,,

where
2 —1/2
xom s () 1]
a Ae

for evanescent TE-mode excitation.
The propagation constant I' is now real, given by

2r [\ T
=3[y
A Ae

The susceptance to be measured is expressed by the
unnormalized value jB. The circuit of Fig. 3(b) may be
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rearranged into that shown in Fig. 3(e), where J-inverter
elements have been extracted from each waveguide
section. Comparing Fig. 3(b) and (e),

coth Tl
X

The circuit is resonant when B + 2B, = 0, i.e.,

BX, = 2 coth Ti.

L =

Hence use of a known length of waveguide permits de-
termination of the normalized value of B through measure-
ment of the resonant frequenecy resulting from a specific
strip insertion. Using this method, the B value is de-

2 nd B,.D, kbt
(kod) — d cos (kod)] + El m} (15)

termined only at the resonant frequency, which varies
with change in strip depth because ! is being held constant.

V. EXPERIMENTAL AND THEORETICAL
RESULTS

Measurements earried out with conventional X-band
waveguide gave the results shown in Fig. 4 for most of the
dominant-mode range. Shown also are the theoretical
results obtained for the two strips using the current dis-
tribution of (9) with %, determined from (12). The
theoretical results obtained using (8) are not shown here,
since the values were only slightly less than those obtained
using (9); similar remarks apply to B values obtained
using (14).

Results obtained at frequencies below cutoff are pre-
sented in Fig. 5. In this case, the results show jB as a
function of depth for a variety of frequencies, each of which
is defined by resonance of the obstacle and the waveguide
of length [ = 1.445 in. It is evident that use of the current
distributions specified by (9) or (14) yields values much
closer to the measured values that are obtained by use of
(8).

These results, and those of Al-Hakkak [57], may be ex-
plained by noting that above cutoff the current distribu-

-t 2} 1Xg sinh 1.2 Xy sinh T2
o——-—p—0 o IO £ IR ©
- re g 1 —L re
= 1X0 coth - T 4%%0 coth 3
o———t—ur——o0>0 O —0
{a) [1v]
J-inverter J-inverter
|~ Rz | e L
| ' g 17 5 —
1
! i | I
L | X 4 1 *_JB -iX . sinh T L
JBL | )Xo sinh T I —l?l_ = 1 I %o l 'BL
| | B |
° i t i = ©
|

T T T T {c}

Fig. 3. A waveguide section below cutoff with a capacitive obstacle
at the center of the guide. (a) Basic geometry. (b) Equivalent
circuit. (¢) Equivalent circuit modified to show J inverters.
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Fig. 4. Normalized values of strip susceptance as a function of
frequency for a centered strip, excited at frequencies in the
dominant-mode region. The solid line shows theoretical results
found using (9) and (12), and the broken line shows experimental
measurements. (a) For w = 0.156 in, d = 0.307 in. (b) For
w = 0.081 in, d = 0.238 in.
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Fig. 5. The strip susceptance as a function of strip depth for a
centered strip, excited at frequencies in the waveguide cutoff re-
gion. The resonant frequency of the waveguide-obstacle combina-
tion is shown for each depth at which measurement occurred.
(a) For w = 0.097 in. (b) For w = 0.16 in.
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tions given by (8), (9), and (14) will be very similar
until the probe depth d > \/4, for which depth (8) gives
a current maximum at y < b while (9) and (14) give the
maximum at y = b. Consequently, as Al-Hakkak points
out, (8) gives inaccurate values for d > A/4. Below cutoff
frequency, ko < 7/2, and (8) gives a current distribution
which is almost of constant slope, quite different from the
sinusoidal distribution of (9) and the almost-sinusoidal
form of (14). Hence the results obtained below cutoff
using (9) or (14) differ appreciably from those obtained
using (8).

The principal source of error in the measurements
oceurs in determination of the insertion depth of the
narrow thin strip into the waveguide. The below-cutoff
measurements were susceptible to this error since the
depth was changed for each experimental point. The
resonant circuit formed by the strip and the below-cutoff
guide was fed by a coaxial line; consequently, a further
source of error arises from neglect of the discontinuity
reactances associated with the adapter from coaxial line to
waveguide.

The resonance effect obtained with the strip used for
Fig. 4(a) may be explained by reference to (10). Above
the cutoff frequency, C is imaginary and negative. At the
low end of the frequency range, the second term in the
denominator is negative and greater in magnitude than
the first term; as a result, the susceptance is capacitive.
With increasing frequency or insertion depth, a frequency
can be found, such that the two denominator terms are
equal and of opposite sign so that resonance oceurs, beyond
which the susceptance ig inductive.

At frequencies below cutoff, C is real, with the result
that the normalized value of B given by (10) is imaginary
(i.e., 7B is real and negative). However, in this frequency
range the waveguide characteristic impedance is inductive.

Using (10) in conjunction with (9), the effect of vari-
ation in strip dimensions and location can be studied.
Fig. 6 shows the variation in B with increase in insertion
depth for representative frequencies below and above
waveguide cutoff. The effect of increase in strip width for a
centered strip is shown in Fig. 7; as the width increases,
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Fig. 6. Normalized values of strip susceptance as a function of
depth, calculated for a centered strip with w = 0.12 in. The solid
line is for f = 11.0 GHz, and the broken line for f = 5.0 GHz.
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Fig. 7. Normalized values of strip susceptance as a function of
strip width, calculated for a centered strip with d = 0.20 in. The
solid line is for f = 11.0 GHz and the broken line for f = 5.0 GHz.

0,80 -
//—\\

0.60 - / \
— / \
=
= oaw- \
B /
E / wavegquide \\
S
£ 0 center \
Z /  0.30 N 0.9

01< !

] 0.60
—
strip cenfnr/xc_- inches

-15 |

Fig. 8. Normalized values of strip susceptance as a function of
strip location, calculated for a strip with w = 0.10 in and d =
0.30 in. The solid line is for f = 11.0 GHz and the broken line for
f = 5.0 GHz.

the assumption that the current distribution is independ-
ent of z will require closer examination. Movement of a
narrow strip transversely in the z direction across the
waveguide yields the curve illustrated in Fig. 8; when the
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strip is close to the waveguide sidewalls, the current dis-
tribution will require modification because of the capac-
itance between the strip and the proximate wall.

VI. CONCLUSIONS

The variational expression developed here, together
with a current distribution based either upon extremiza-
tion of the variational expression for current or upon use
of the analogy to backsecattering of a cylindrical obstacle
by an incident plane wave, provides an accurate char-
acterization for the thin narrow strip inserted partially
into waveguide. A feature of the analysis is its applica-
bility at frequencies below that at which the dominant
mode propagates without attenuation.

The simplest computation yielding accurate results is
given by (13). Results obtained using (8) are inaccurate
below the cutoff frequency, or at high frequencies or large
probe depths such that d > \/4.
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