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Analysis of a Narrow Capacitive Strip in Waveguide

KAI CHANG AND PETER J. KHAN, MEMBER, IEEE

Abstracf—A theoretical determination is made for the susceptance

of a narrow conducting strip inserted vertically into a waveguide.

The theory is based upon a variational form for the susceptance. A

suitable current distribution along the strip is obtained for We vari-

ational equation, and is found to be similar to that determined from

analysis of backscattering by a cylindrical obstacle irradiated from

an incident plane wave. Accurate theoretical results may be ob-

tained using a sinusoidal current distribution having a phase constant

of ~/2d, where d is the strip depth. Experimental results agree

closely with the theory in the dominant-mode range and also at

frequencies below cutoff.

I. INTRODUCTION

THIS PAPER reports an analysis of the effect of in-
sertion of a narrow infinitesimally thin conducting

strip vertically into a rectangular waveguide such that

the strip does not extend across the entire height of the

guide. The principal feature of the variational method

used here is the determination of a suitable form for the

current distribution along the strip. The effort to find this

distribution was motivated by the need to characterize

the obstacle reactance at frequencies below the don~inant-

mode cutoff frequency as well as in the more usual dom-

inant-mode range.

A variety of capacitive obstacles are in common use in

waveguide circuit design, including capacitive windows

and circular cylindrical probes or tuning screws inserted

vertically into the guide. Use of the narrow strip was con-

sidered here, in preference to the more usual obstacles,

because it offered a ready means of adjusting the strip

insertion, with the likelihood of decreased loss when com-

pared to the capacitive tuning screw.

The variational technique developed by Schwinger [1]

has been applied to the narrow inductive strip by Collin

[2], and to the circular cylindrical probe in waveguide by

Lewin [3], [4] and Collin [2]. The resulting variational

expression for the shunt reactance contains a term repre-

senting the current distribution along the obstacle; sub-

stitution of an approximate expression for this distribution

yields a reactance value which provides an upper bound to

the exact value. Typically, the current distribution has

been assumed constant for the inductive strip; for the

probe, the current is taken to have a sinusoidal form, with

a free-space phase constant lcO = 2rr/k, and with a zero

at the open end of the probe. Experimental measurements

by A1-Hakkak [5] agree with the theoretical results of

Collin, provided the probe length does not exceed 0.6 of

the guide height. Detinko and Levdikova [6] have con-

sidered the case where the current is constant along the

probe, in an attempt to reconcile the theory with experi-

mental measurements on long probes.

Characterization in the waveguide cutoff-frequency

range was required because the capacitive obstacles were

being considered for use in the design of evanescent-mode

waveguide filters [7]. Mok [8] has presented expressions

for diaphragm reactance in evanescent waveguides, and

has reported measurements indicating that a probe ob-

stacle remains capacitive below the waveguide cutoff

frequency.

II. THE VARIATIONAL EQUATION

The structure to be analyzed is shown in Fig. 1. The

strip is assumed to be infinitesimally thin, and to be suf-

ficiently narrow that the current does not vary appreciably

with x, in the range xl < x < x2. Both the strip and the

waveguide are assumed to be formed of material having

infinite conductivity. The strip is located at z = O.
The derivation of the variational equation follows the

procedure set out in Collin [2], with additional com-

plexit y introduced by the fact that the current js a func-

tion of the coordinate y in the present case.

Considering a dominant-mode incident electric field

()Ei = sin ~ exp ( – rmz) ~

the resulting scattered field may be expressed as

E. = –jti~o
I

~(r I r’) .J(r’) dr’ (1)

s

where the integration is carried out over the strip surface

S, and the dyadic Green’s function for use here is given

by Tai [9] in the form

G(r I r’) = GV(r I r’)~~

where

@ (2 – dfi) (k,’ – m2T2/b’) exp (–r.mI21)
Gv(rl r’) = ~ ~

.=1 m=o abkozrnm ‘inr$)sinr$)cose) cosec)
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Fig. 1. ThetKln capacitive strip inrectangular waveguide.

This form for the Green’s function is based upon the as-

sumption that the scattered field lies in the y direction.

The total field at any point r is given by

()E,(r) = E~(r) + E,(r) = sin g~ exp (– rlw)y

+ / (–@JIJO) G(r ] r’) “J(r’) dr. (2)
s

The current is assumed to have only a y component, and

to be a function only of y on the narrow strip surface S.

Since E, vanishes on the perfectly conducting surface S,

(2 – &) (k? - m’#jb2)J~~
.

ablco’r.m 1
where

(6)

The obstacle has a normalized

. Cos()‘~ dxdydx’dy’.

susceptance j~ given by

Using (4) and (6), an expression for the susceptance is

found in the form

.j + ~ ~ (2 – h) (k02 – m2~2/b2)J~~

r 1
(7)

m=il m=l;atn=l nm

sin@) -jwpO~ [Gy(r 1 r’] I.=oJ,(Y’)dx’dy’= o,

on S. (3)

The re~ected dominant mode for z <0 is characterized

by a reflection coefficient R. The value of R comes from

(1) in the form

– jcopO
R=————

I ()
Jv(y’) sin ‘~” dx’dy’. (4)

ab rlo s

Using a method similar to that of Lewin [3, p. 79] this

expression may be shown to be stationary for small

variations in Ju about its correct valtie. Use of an ap-

proximate form for J. in (7) yields a lower bound on the

true value of the susceptance.

The expression (7) reduces to a form identical to that

of Collin [2] if the strip extends across the entire wave-

guide height and the current is assumed constant along the

strip.

Substituting for R in (3),

()(1 +R) sin ~

(2 – &) (ko2 – m2T2/b2)
=j.po(i i + s )

.=2 m=(l ~=l; at n=l abhijzI’fim

“sinr=)cos(?)Lsinr+ )cosw)

.Jg(y’) dx’dy’ (5)

which may be put in the form

()(1 + R) ~ JV(y) sin ~ dxdy
s

[
=jupo(~j+ ~ )

.=2 m=o m=l; at ??=1

111. CURRENT DISTRIBUTION ALONG

THE STRIP

Waveguide probe studies [2], 13], [5] have used an

approximate current distribution of the form

J,(y) = sinko(y – b + d). (8)

Consequently,, this distribution was used in (7) for the

narrow strip. The resulting values of 3 were found to be

in reasonable agreement with the experimental measure-

ments for the dominant-mode propagation frequency

range. However, the theoretical values were considerably

less than those found by experiment in the dominant-mode

cutoff frequency range ($hown in Fig. 5).
Use was then made of the modified distribution

J,(y) = sinh(y – b + d) (9)

where kl is to be determined by substituting in (7) and

finding the kl value which extremizes the variational ex-
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pression forjB. Implicit in this choice is the assumption number of terms. Using a half-section method, with im

that the current is zero at the end of the strip where error interval of 0.03, theinfinite series could betruneated

~ = b – d. This is valid when the end-capacity of the with N 520, M S 20.

strip can be neglected [3, p. 86]. When d approaches b, The resulting lcl values are shown for a typical set of

the validity of the assumption will be weakened. electrical and geometric parameters in Fig. 2. It is evident

Substituting (9) in (7) and evaluating the integrals, we that kl is only slightly dependent on frequency, position,

obtain and width, and that its value is quite different from i%.

/{
A(cosk,d – 1)2 + ~

{

k14B~b4
jB = C(cos?cld – 1)2

[ 11}

wm(b – d) 2;

~, (m’~’ – k?bz)’
(–l)~cosk,d – COS b (lo)

where The variation of kl with d can be approximated by the

‘= :{A[cO’&)-cOs&)l’l

equation kI = x/2d with good accuracy. Thus the vari-

ational solution for kl yields a sinusoidal current distribu-

tion which proceeds from zero at the open end of the strip

to a maximum at the point close to y = b, where the strip

{

w 2 (kO’ – m2~2/b2)
Bm=~

1 ko2rnmn2n= [cost% -cost%’} ‘ee’sthe’vavegtidewa’l”Use of (9) with kl = ~/2d reduces (10) to the form

jB = C/ ~ + ~, {~(~m,;;!! &)2] cos2 ~“(bb- ‘))]} .
(13)

C=:[cose)-cossl’
Putting (d/NcJ (j~) = O yields the equation

b%’(cos lc,d – 1) f(k,) = O (11)

where

[
● (–l)m COS(kld) – COS

r“(bb_d))l

“ 2k1dsin(’’1d)c0sr*(bb_d))-4(-1)m{
.COS2(kId) + 4( — 1)~ COS(kId) + 4 COS(kld)

.cos~.(b;d))_4c08~(b;d))

41cl’b2
– 2( – l)%kld sin (Iclci) –

m2# — k12b2

[
‘[COS (kId) – ~] (–l)m COS(kId)

-cOsr(bb_d))l}}
(12)

The solution cos kld = 1 to (11) is inappropriate to our

purpose since it gives jB = O. We are therefore led to seek

solutions to the equation j(kl) = O. Despite its apparent

complexity, this equation is readily solved numerically,

taking advantage of the fact that the infinite series are all

rapidly convergent and can be approximated by a small

This distribution is reminiscent of that obtained from

analysis of backscattering by a cylindrical obstacle ir-

radiated from a broad-side incident plane wave. Tai [10]

has shown. that accurate results may be obtained for a

long thin wire of length 21 centered at the origin and co-

inciding with the z axis by use of the current distribution

1(2) = Io(cos kllz – Cos kol)
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Fig. 2. The free-space parameter kO and the vsr~ational parameter

lcI shown as a function of (a) ,strip depth d (m) ~ (b). frequency
f (GHz); (g) strip-center locatlon Z6 (m); (d) strip mndth w (in).
The following values are used, except for the quantity being
varied: w = 0.15 in; d = 0.3 m; j = 11.0 GHz; x, = a/.2. The
solid line indicat~s kl and the broken line k~; the dimensions of
~, and k, are reciprocal inches. For these calculations, a = 0.90
m; b = 0.40 in.
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which proceeds uniformly from zero at the ends to a

maximum at the center, for kol < r. He also shows that the

accuracy obtained with this distribution is reduced when

1 takes values satisfying tan lcol = kJ.

Arguing by analogy, it might thus be anticipated that

a suitable alternative to use of (9) for the narrow strip,

with kl = r/2d, would be use of

Jv(y) = Cos ko(y – b) – Cos lcod. (14)

For conventional waveguide, koh < r for frequencies

extending to the upper end of the dominant-mode region.

Substitution of (14) in (10) yields an expression for the

normalized susceptance in the form

rearranged into that shown in Fig. 3(c), where J-inverter

elements have been extracted from each waveguide

section. Comparing Fig. 3(b) and (c),

coth N
BL=– —

XII “

The circuit is resonant when B + 2BL = O, i.e.,

BXO = 2 coth IV.

Hence use of a known length of waveguide permits de-

termination of the normalized value of B through measure-

ment of the resonant frequency resulting from a specific

strip insertion. Using this method, the B value is de-

[

2

jB = C ~. sin (k&) – d cos (k~) 1/{[ 1A ~ sin (k~) – d cos (k~) ‘ + ~1 ~nf$f’_’k~b,),
1

(15)

where

()
D.= ~

m2# c0s2(k~)sin2r=(bb_ d))

()lcob
+

(

2mm(b – d)
KT sin (2&d) sin
. b )

‘sin’@@cO’2r=(bb_d))
IV. EXPERIMENTAL MEASUREMENT

PROCEDURE

The susceptance is readily measured in the dominant-

mode range using conventional slotted-line techniques.

However, this method is inapplicable to measurements in

the frequency range below cutoff. Mok [11] has described

a procedure using a slotted line together with a wave-

guide filled with dielectric material; the range of fre-

quencies below cutoff over which measurements can be

made depends on the value of the dielectric constant, and

the accuracy decreases as the frequency decreases.

The technique used here depends upon resonance of the

obstacle with a section of waveguide below cutoff, and is

based on the filter design theory of Craven and Mok [7].

A waveguide section of length 21, with a shunt strip

obstacle at the center of that length, is shown in Fig. 3(a),

and its equivalent circuit illustrated in Fig. 3 (b). The

characteristic impedance of the line is given by jXO,

where

‘0=120”(:)[(+‘r
for evanescent TE1o-mode excitation.

The propagation constant r is now real, given by

‘=:[(;)-r
The susceptance to be measured is expressed by the

unnormalized value jB. The circuit of Fig. 3(b) may be

termined only at the resonant frequency, which varies

with change in strip depth because 1 is being held constant.

V. EXPERIMENTAL AND THEORETICAL

RESULTS

Measurements carried out with conventional X-band

waveguide gave the results shown in Fig. 4 for most of the

dominant-mode range. Shown also are the theoretical

results obtained for the two strips using the current dis-

tribution of (9) with k, determined from (12). The

theoretical results obtained using (S) are not shown here,

since the values were only slightly less than those obtained

using (9); similar remarks apply to B values obtained

using (14).

Results obtained at frequencies below cutoff are pre-

sented in Fig. 5. In this case, the results show jB as a

function of depth for a variety of frequencies, each of which

is defined by resonance of the obstacle and the waveguide

of length 1 = 1.445 in. It is evident that use of the current

distributions specified by (9) or (14) yields values much

closer to the measured values that are obtained by u~e of

(8).

These results, and those of A1-Hakkak [5], may be ex-

plained by noting that above cutoff the current distribu-
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Fig. 3. A waveguide section below cutoff with a capacitive obstacle
at the center of the guide. (a) Basic geometry. (b) Equivalent
circuit. (c) Equivalent circuit modfied to show J inverters.
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Fig. 4. Normalized values of strip susceptance as a function of
frequency for a centered strip, excited at frequencies in the
dominant-mode region. The solid line shows theoretmal results
found using (9) and (12), andthebroken line shows experimental
measurements. (a) For w = 0.156 in, d = 0.307 in. (b) For
w = 0.081 in, d = 0.238 in.
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Fig. 5. The strip susceptance as a function of strip depth for a
centered strip, excited at frequencies in the waveguide cutoff re-
gion. Theresonant frequency of thewaveguid+obstacle combina-
tion is shown for each depth at which measurement occurred.
(a) Forw =0.097 in. (b) Forw =0.16 in.

tions given by (8), (9), and (14) will be very similar

until the probe depthd > k/4, for which depth (8) gives

a current maximum at y < b while (9) and (14) give the

maximum at y = b. Consequently, as A1-Hakkak points

out, (8) gives inaccurate values for d > k/4. Below cutoff

frequency, kda?<< 7r/2, and (8) gives a current distribution

which is ahnost of constant slope, quite different from the

sinusoidal distribution of (9) and the ahnost-sinusoidal

form of (14). Hence the results obtained below cutoff

using (9) or (14) differ appreciably from those obtained

using (8).

The principal source of error in the measurements

occurs in determination of the insertion depth of the

narrow thin strip into the waveguide. The below-cutoff

measurements were susceptible to this error since the

depth was changed for each experimental point. The

resonant circuit formed by the strip and the below-cutoff

guide was fed by a coaxial line; consequently, a further

source of error arises from neglect of the discontinuity

reactance associated with the adapter from coaxial line to

waveguide.

The resonance effect obtained with the strip used for

Fig. 4(a) may be explained by reference to (10). Above

the cutoff frequency, C is imaginary and negative. At the

low end of the frequency range, the second term in the

denominator is negative and greater in magnitude than

the first term; as a result, the susceptance is capacitive.

With increasing frequency or insertion depth, a frequency

can be found, such that the two denominator terms are

equal and of opposite sign so that resonance occurs, beyond

which the susceptance is inductive.

At frequencies below cutoff, C is real, with the result

that the normalized value of B given by (10) is imaginary

(i.e., j~ is real and negative). However, in this frequency

range the waveguide characteristic impedance is inductive.

Using (10) in conjunction with (9), the effect of vari-

ation in strip dimensions and location can be studied.

Fig, 6 shows the variation in B with increase in insertion

depth for representative frequencies below and above

waveguide cutoff. The effect of increase in strip width for a

centered strip is shown in Fig. 7; as the width increases,
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Fig. 6. Normalized values of strip susceptance as a function of
depth, calculated for a centered strip with w = 0.12 in. The solid
line is for j = 11.0 GHz, and the broken line for j = 5.0 GHz.
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j = 5.0 GHz.

the assumption that the current distribution is independ-

ent of x will require closer examination. Movement of a

narrow strip transversely in the x direction across the

waveguide yields the curve illustrated in Fig. 8; when the

541

strip is close to the waveguide sidewalls, the current dis-

tribution will require modification because of the capac-

itance between the strip and the proximate wall.

VI. CONCLUSIONS

The variational expression developed here, together

with a current distribution based either upon extremiza-

tion of the variational expression for current or upon use

of the analogy to backscattering of a cylindrical obstacle

by an incident plane wave, provides an accurate char-

acterization for the thin narrow strip inserted partially

into waveguide. A feature of the analysis is its applica-

bility at frequencies below that at which the dominant

mode propagates without attenuation.

The simplest computation yielding accurate results is

given by (13). Results obtained using (8) are inaccurate

below the cutoff frequency, or at high frequencies or large

probe depths such that d > A/4.
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